Предмет: Алгебра,
автор: sahaorlow
Помагите прям в край нужно плезз
Приложения:
![](https://files.topotvet.com/i/2fa/2fa17845e7ec6bffcfb96243531b2146.jpg)
NNNLLL54:
Много примеров. Можно три.
Ответы
Автор ответа:
0
№2.
![\frac{b^2}{2b-a} *(2- \frac{a}{b} ) = \frac{b^2}{2b-a} * \frac{2b -a}{b} = \frac{(b*b) *(2b-a)}{b(2b-a)}= \frac{b*1*1}{1*1}= \frac{b}{1} =b \\ \\
\frac{d^3}{c-3d} * ( \frac{c}{d} -3) = \frac{d^3}{c-3d} * \frac{c-3d}{d} = \frac{d^2}{1} =d^2 \\ \\
\frac{5+3x}{x^5 } : ( \frac{3}{5} + \frac{1}{x} ) = \frac{5+3x}{x^5 } : \frac{3x + 1*5}{5x} = \frac{5+3x}{x^5 } : \frac{5+3x}{5x} = \frac{5+3x}{x^5} * \frac{5x}{5+3x} = \frac{5}{x^4} \\ \\
\frac{b^2}{2b-a} *(2- \frac{a}{b} ) = \frac{b^2}{2b-a} * \frac{2b -a}{b} = \frac{(b*b) *(2b-a)}{b(2b-a)}= \frac{b*1*1}{1*1}= \frac{b}{1} =b \\ \\
\frac{d^3}{c-3d} * ( \frac{c}{d} -3) = \frac{d^3}{c-3d} * \frac{c-3d}{d} = \frac{d^2}{1} =d^2 \\ \\
\frac{5+3x}{x^5 } : ( \frac{3}{5} + \frac{1}{x} ) = \frac{5+3x}{x^5 } : \frac{3x + 1*5}{5x} = \frac{5+3x}{x^5 } : \frac{5+3x}{5x} = \frac{5+3x}{x^5} * \frac{5x}{5+3x} = \frac{5}{x^4} \\ \\](https://tex.z-dn.net/?f=+%5Cfrac%7Bb%5E2%7D%7B2b-a%7D+%2A%282-+%5Cfrac%7Ba%7D%7Bb%7D+%29+%3D++%5Cfrac%7Bb%5E2%7D%7B2b-a%7D++%2A++%5Cfrac%7B2b+-a%7D%7Bb%7D+%3D+%5Cfrac%7B%28b%2Ab%29+%2A%282b-a%29%7D%7Bb%282b-a%29%7D%3D+%5Cfrac%7Bb%2A1%2A1%7D%7B1%2A1%7D%3D+%5Cfrac%7Bb%7D%7B1%7D+%3Db+%5C%5C++%5C%5C+%0A+%5Cfrac%7Bd%5E3%7D%7Bc-3d%7D+%2A+%28+%5Cfrac%7Bc%7D%7Bd%7D+-3%29+%3D++%5Cfrac%7Bd%5E3%7D%7Bc-3d%7D+%2A++%5Cfrac%7Bc-3d%7D%7Bd%7D+%3D++%5Cfrac%7Bd%5E2%7D%7B1%7D+%3Dd%5E2+%5C%5C++%5C%5C+%0A+%5Cfrac%7B5%2B3x%7D%7Bx%5E5+%7D+%3A+%28+%5Cfrac%7B3%7D%7B5%7D+%2B+%5Cfrac%7B1%7D%7Bx%7D+%29+%3D++%5Cfrac%7B5%2B3x%7D%7Bx%5E5+%7D+%3A++%5Cfrac%7B3x+%2B+1%2A5%7D%7B5x%7D+%3D++%5Cfrac%7B5%2B3x%7D%7Bx%5E5+%7D+%3A++%5Cfrac%7B5%2B3x%7D%7B5x%7D+%3D++%5Cfrac%7B5%2B3x%7D%7Bx%5E5%7D+%2A++%5Cfrac%7B5x%7D%7B5%2B3x%7D+%3D++%5Cfrac%7B5%7D%7Bx%5E4%7D++%5C%5C++%5C%5C+%0A)
![\frac{3+2y}{y^4} : ( \frac{2}{3} + \frac{1}{y} )= \frac{3+2y}{y^4} : \frac{2y +1*3}{3y} = \frac{3+2y}{y^4} * \frac{3y}{3+2y} = \frac{3}{y^3} \frac{3+2y}{y^4} : ( \frac{2}{3} + \frac{1}{y} )= \frac{3+2y}{y^4} : \frac{2y +1*3}{3y} = \frac{3+2y}{y^4} * \frac{3y}{3+2y} = \frac{3}{y^3}](https://tex.z-dn.net/?f=+%5Cfrac%7B3%2B2y%7D%7By%5E4%7D++%3A+%28+%5Cfrac%7B2%7D%7B3%7D+%2B+%5Cfrac%7B1%7D%7By%7D+%29%3D++%5Cfrac%7B3%2B2y%7D%7By%5E4%7D++%3A++%5Cfrac%7B2y+%2B1%2A3%7D%7B3y%7D+%3D++%5Cfrac%7B3%2B2y%7D%7By%5E4%7D+%2A++%5Cfrac%7B3y%7D%7B3%2B2y%7D+%3D+%5Cfrac%7B3%7D%7By%5E3%7D+)
Похожие вопросы
Предмет: Физика,
автор: ocerednaadiana
Предмет: Физика,
автор: ilyaiskakov00
Предмет: Қазақ тiлi,
автор: KuralbekR
Предмет: Химия,
автор: Gerbel
Предмет: Алгебра,
автор: egor879