Предмет: Алгебра,
автор: lorxop
Покажите что вектор BE и BC перпендикулярны если А(0;1),В(2;-1), С(4;1).
Ответы
Автор ответа:
0
Они перпендикулярны, если их скалярное произведение равно 0
Скалярное произведение находится так : (a,b)=x1*x2+y1*y2+z1*z2
Координаты вектора: ВА{xа-xb;ya-yb}
АВ{0 - 2;1-(-1)} Вектор : ВA{-2; 2}.
ВС{xc-xb;yc-yb}
АВ{4 - 2;1 -(-1)} Вектор : BC{2; 2}.
Находим скалярное произведение векторов :
BA + BC = 0(-2)*2 + 2*2 = -4 + 4 = 0
Значит, вектора ВА и ВС перпендикулярны.
Что и требовалось доказать
Скалярное произведение находится так : (a,b)=x1*x2+y1*y2+z1*z2
Координаты вектора: ВА{xа-xb;ya-yb}
АВ{0 - 2;1-(-1)} Вектор : ВA{-2; 2}.
ВС{xc-xb;yc-yb}
АВ{4 - 2;1 -(-1)} Вектор : BC{2; 2}.
Находим скалярное произведение векторов :
BA + BC = 0(-2)*2 + 2*2 = -4 + 4 = 0
Значит, вектора ВА и ВС перпендикулярны.
Что и требовалось доказать
Похожие вопросы
Предмет: Математика,
автор: neysz
Предмет: Математика,
автор: xxlopp33
Предмет: Французский язык,
автор: nurajymbolotbekova3
Предмет: География,
автор: irina70sokol
Предмет: Математика,
автор: katek173