Предмет: Математика,
автор: orlowakr25
Помогите решить задачку
даны натуральные числа х и у.Какое из чисел больше и во сколько раз, если 10/9 x=5/12 y
Ответы
Автор ответа:
2
Перемножим крест накрест:
120x=45y
x=45y/120
x/y=45/120
x/y=3/8
y/x=8/3
Ответ: y больше в 8/3 раза
120x=45y
x=45y/120
x/y=45/120
x/y=3/8
y/x=8/3
Ответ: y больше в 8/3 раза
xxxeol:
Это не 10/(9х) и 5/(12у)
120x=45y y= 120x/45=8/3 x x=45y/120= 3/8 y т.е больше у,примерно в 3 раза
Автор ответа:
2
Уточним запись вопроса - знаком умножить.
ДАНО
10/9*х = 5/12*у
РЕШЕНИЕ
Для сравнения дробей приведём их к общему знаменателю - НОК(9,12) = 36
40/36*х = 15/36*у
Уходим от знаменателя - умножаем обе части равенства на 36.
40*х = 15*у или, сократив на 5, получаем:
8*х = 3*У
х/у = 3/8 - Х меньше У - отношение - ОТВЕТ
у/х = 8/3 = 2 2/3 - У больше Х - отношение - ОТВЕТ
ДАНО
10/9*х = 5/12*у
РЕШЕНИЕ
Для сравнения дробей приведём их к общему знаменателю - НОК(9,12) = 36
40/36*х = 15/36*у
Уходим от знаменателя - умножаем обе части равенства на 36.
40*х = 15*у или, сократив на 5, получаем:
8*х = 3*У
х/у = 3/8 - Х меньше У - отношение - ОТВЕТ
у/х = 8/3 = 2 2/3 - У больше Х - отношение - ОТВЕТ
Похожие вопросы
Предмет: Физика,
автор: alisasemenova627
Предмет: Химия,
автор: batyrova200729
Предмет: Английский язык,
автор: Аноним
Предмет: История,
автор: Leonin
Предмет: Алгебра,
автор: Анечка0123