Предмет: Математика,
автор: tishenkova2001
В правильном тетраэдре ABCD найдите угол между высотой тетраэдра DH и медианой BM боковой грани BCD.
Ответы
Автор ответа:
5
пусть тетраэдр единичный.
Пусть В - начало координат.
ось X - BC
ось У - перпендикулярно X в сторону A
ось Z - вверх перпендикулярно АВС в сторону D
Высота правильного тетраэдра √(2/3) - она же длина НD
Вектор НD(0;0;√(2/3))
координаты точки М и вектора ВМ
ВМ(3/4;1/(4√3);1/√6) длина √(9/16+1/48+1/6)=√(36/48)
косинус угла между искомыми векторами равен
| HD * BM | / | НD | / | BM | = 1/3/√(2/3)/√(36/48)= √(8/36)
угол аrccos (√2/3)
Пусть В - начало координат.
ось X - BC
ось У - перпендикулярно X в сторону A
ось Z - вверх перпендикулярно АВС в сторону D
Высота правильного тетраэдра √(2/3) - она же длина НD
Вектор НD(0;0;√(2/3))
координаты точки М и вектора ВМ
ВМ(3/4;1/(4√3);1/√6) длина √(9/16+1/48+1/6)=√(36/48)
косинус угла между искомыми векторами равен
| HD * BM | / | НD | / | BM | = 1/3/√(2/3)/√(36/48)= √(8/36)
угол аrccos (√2/3)
Похожие вопросы
Предмет: Музыка,
автор: aygerimabdrashova
Предмет: Химия,
автор: ahmadlatipov55
Предмет: Қазақ тiлi,
автор: khanyt759
Предмет: Математика,
автор: dashalucenko1
Предмет: Обществознание,
автор: марина712