Предмет: Математика, автор: tishenkova2001

В правильном тетраэдре ABCD найдите угол между высотой тетраэдра DH и медианой BM боковой грани BCD.

Ответы

Автор ответа: au456
5
пусть тетраэдр единичный.
Пусть В - начало координат.
ось X - BC
ось У - перпендикулярно X в сторону A
ось Z - вверх перпендикулярно АВС в сторону D

Высота правильного тетраэдра √(2/3) - она же длина НD
Вектор НD(0;0;√(2/3))
координаты точки М и вектора ВМ
ВМ(3/4;1/(4√3);1/√6) длина √(9/16+1/48+1/6)=√(36/48)
косинус угла между искомыми векторами равен
| HD * BM | / | НD | / | BM | = 1/3/√(2/3)/√(36/48)= √(8/36)
угол аrccos (√2/3)
Похожие вопросы
Предмет: Қазақ тiлi, автор: khanyt759
Предмет: Математика, автор: dashalucenko1