Предмет: Геометрия, автор: SNPC

В окружность вписан равнобедренный треугольник A B C с основанием B C . Найдите дугу B C , если ∠ B = 72°.

Ответы

Автор ответа: xERISx
2
ΔABC - равнобедренный:  AB = AC
∠B = ∠C = 72° (углы при основании BC)
Сумма углов треугольника равна 180°  ⇒
∠A = 180° - ∠B -  ∠C = 180° - 72° - 72° = 36°

Вписанный угол равен половине дуги, на которую опирается  ⇒
Дуга ∪BC = 2*∠A = 2*36° = 72°

Ответ: ∪BC = 72°
Приложения:
Похожие вопросы
Предмет: Русский язык, автор: makcmopmop
Предмет: Информатика, автор: clavahohlov