Предмет: Геометрия,
автор: eminnir
из одной точки C проведены наклонные CA и CB к плоскости y под углом а . Угол между проекциями на плокскости y этих наклонных равен B . Найдите угол между плоскостями y и ABC
Ответы
Автор ответа:
2
Дано: (СА; γ)=(СВ; γ)=α; АСВ=β
Найти: sin(ABC; γ)
Решение: Чтобы найти угол между двумя плоскостями, нужно провести в каждой плоскости перпендикуляр к линии пересечения этих плоскостей, угол между этим перпендикулярами и будет углом между плоскостями.
Проведем СН перпендикулярно плоскости γ и СМ - биссектрису угла АСВ. Так как углы наклона СА и СВ к плоскости γ равны, то СА=СВ, следовательно треугольник АСВ равнобедренный и СМ является также медианой и высотой. Аналогично, проекции равных отрезков на плоскость γ равны между собой НА=НВ, а НМ является биссектрисой, медианой и высотой в равнобедренном треугольнике АНВ.
Распишем искомый синус угла:
Чтобы найти СН сделаем планиметрическую картинку треугольника АСНи запишем синус известного угла CAH:
Чтобы найти СМ аналогично изобразим картинку треугольника АСВ. Так как СМ - биссектриса, то угол АСМ равен (β/2). Рассмотрим треугольник АСМ:
Подставляем найденные величины в формулу для синуса искомого угла:
Ответ: sin(α)/cos(β/2)
Найти: sin(ABC; γ)
Решение: Чтобы найти угол между двумя плоскостями, нужно провести в каждой плоскости перпендикуляр к линии пересечения этих плоскостей, угол между этим перпендикулярами и будет углом между плоскостями.
Проведем СН перпендикулярно плоскости γ и СМ - биссектрису угла АСВ. Так как углы наклона СА и СВ к плоскости γ равны, то СА=СВ, следовательно треугольник АСВ равнобедренный и СМ является также медианой и высотой. Аналогично, проекции равных отрезков на плоскость γ равны между собой НА=НВ, а НМ является биссектрисой, медианой и высотой в равнобедренном треугольнике АНВ.
Распишем искомый синус угла:
Чтобы найти СН сделаем планиметрическую картинку треугольника АСНи запишем синус известного угла CAH:
Чтобы найти СМ аналогично изобразим картинку треугольника АСВ. Так как СМ - биссектриса, то угол АСМ равен (β/2). Рассмотрим треугольник АСМ:
Подставляем найденные величины в формулу для синуса искомого угла:
Ответ: sin(α)/cos(β/2)
Похожие вопросы
Предмет: Українська література,
автор: George1102
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: Аноним
Предмет: Биология,
автор: Настюха3111