Предмет: Геометрия,
автор: Sonchatru
∆АBС и ∆А1Б1BС1, где ВС=В1С1, угол С=углу С1 и АВ+АС=А1В1+А1С1. Доказать, что медианы ВD и В1D1 равны
Ответы
Автор ответа:
1
Достаточно доказать, что треугольники равны между собой. Построим треугольники со сторонами КВС и К1В1С1, так, что КС=АВ+АС= К1С1, К ик1 на продолжении СА и С!А1, соответственно.
Эти треугольниеи равны по двум сторонам и углу между ними.
Из середины кв возведем перпендикуляр до пересечения с АС в точке М.
Также из середины К1В1 до М1.
Треугольники КМВ и К!М1В1 , очевидно равнобедренные и равны между собой. Значит АВ=А1В1 и АС=КС-АВ=К1С1-А1В1=А1С1.
Значит ∆АBС = ∆А1Б1BС1 по трем сторонам. Значит и соответствующие медианы равны между собой.
Эти треугольниеи равны по двум сторонам и углу между ними.
Из середины кв возведем перпендикуляр до пересечения с АС в точке М.
Также из середины К1В1 до М1.
Треугольники КМВ и К!М1В1 , очевидно равнобедренные и равны между собой. Значит АВ=А1В1 и АС=КС-АВ=К1С1-А1В1=А1С1.
Значит ∆АBС = ∆А1Б1BС1 по трем сторонам. Значит и соответствующие медианы равны между собой.
Похожие вопросы
Предмет: Другие предметы,
автор: asadbek62
Предмет: Химия,
автор: Tamara020971
Предмет: География,
автор: tanele6420
Предмет: Математика,
автор: Анастасия55111
Предмет: Литература,
автор: Дианна111