Предмет: Алгебра,
автор: Аноним
Произведение двух последовательных натуральных чисел меньше произведения следующих двух последовательных натуральных чисел не более чем на 60. Найдите, какое наибольшее целое значение может принимать меньшее из чисел.
Ответы
Автор ответа:
36
Найдём разницу между требуемыми произведениями натуральных чисел, которая не более 60.
(n + 3)·(n + 2) - (n - 1)·n ≤ 60
n² + 5n + 6 - n² + n ≤ 60
4n ≤ 54
n ≤ 13,5
Отсюда наибольшее целое n = 13.
Проверка:
13·14 = 182
15·16 = 240
240 - 182 = 58
Ответ: 13
(n + 3)·(n + 2) - (n - 1)·n ≤ 60
n² + 5n + 6 - n² + n ≤ 60
4n ≤ 54
n ≤ 13,5
Отсюда наибольшее целое n = 13.
Проверка:
13·14 = 182
15·16 = 240
240 - 182 = 58
Ответ: 13
Violajrmosh:
А откуда в проверке 15?
Читаем условие: "Произведение двух последовательных натуральных чисел меньше произведения следующих двух последовательных натуральных чисел не более чем на 60".
Вы решили не правильно
Похожие вопросы
Предмет: Обществознание,
автор: kprok1667
Предмет: Физика,
автор: ilanevejkin29
Предмет: Математика,
автор: gryaznova17
Предмет: Литература,
автор: Аноним