Предмет: Алгебра,
автор: arfremova
Обчисліть площу фігури, обмеженої параболою Y=-x^2-6x-7 та прямою y=x+3
Ответы
Автор ответа:
1
y=-x²-6x-7 y=x+3
-x²-6x-7=x+3
x²+7x+10=0 D=9
x₁=-5 x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵= =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)= =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
Ответ: S=4,5 кв. ед.
y=-x²-6x-11 y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0 D=-7 ⇒ уравнение не имеет действительных корней ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.
-x²-6x-7=x+3
x²+7x+10=0 D=9
x₁=-5 x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵= =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)= =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
Ответ: S=4,5 кв. ед.
y=-x²-6x-11 y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0 D=-7 ⇒ уравнение не имеет действительных корней ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.
arfremova:
огромное вам спасибо, была бы очень благодарна если бы вы мне помогли решить ещё такие подобные задачи)
Похожие вопросы
Предмет: Химия,
автор: svetlana5kisa
Предмет: Русский язык,
автор: Devinirum
Предмет: Математика,
автор: Sergio1407
Предмет: Математика,
автор: саша859