Предмет: Геометрия,
автор: Dasha132356
ПОМОГИЕ С ГЕОМЕТРИЕЙ!!!!!!!!
В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен I. Определить боковую поверхность пирамиды.
Ответы
Автор ответа:
3
Пирамида правильная, поэтому боковые грани - равные равнобедренные треугольники.
Центр окружности, вписанной в треугольник, лежит в точке пересечения биссектрис.
Грань АМВ: треугольник, в котором АВ - основание, а его высота МН, поскольку высота равнобедренного треугольника ещё биссектриса и медиана, делит АВ пополам.
АН=НВ,
Апофема МН=АН•tgβ
AH=ОА•cos(0,5β)=cos(0,5β)⇒
MH=cos(0,5β)•tgβ
SAMB=MH•AH=cos(0,5β)•cos(0,5β)•tgβ=cos²(0,5β)•tgβ
S(бок)=4•cos²(0,5β)•tgβ
Приложения:
Похожие вопросы
Предмет: Қазақ тiлi,
автор: nurasyl21
Предмет: Русский язык,
автор: malikaomarova2007
Предмет: Литература,
автор: valeroivan2003
Предмет: Математика,
автор: bakytgul1982
Предмет: Математика,
автор: Rabot9ga228