Предмет: Алгебра,
автор: Menlow
Cos(arcsin3/5+arccos4/5) помогите решить срочно!!!
Ответы
Автор ответа:
2
Рассмотрим египетский треугольник - у него катеты 3 и 4, гипотенуза 5. Пусть - угол против катета =3. Тогда sin a=3/5, α = arcsin 3/5. Одновременно cos α= 4/5, α=arccos 4/5 Поэтому arcsin 3/5=arccos 4/5;
cos(arcsin 3/5+arccos 4/5)=cos(2arccos 4/5)=
2cos²(arccos 4/5)-1=2(4/5)²-1=32/25-1=7/25
Ответ: 7/25
cos(arcsin 3/5+arccos 4/5)=cos(2arccos 4/5)=
2cos²(arccos 4/5)-1=2(4/5)²-1=32/25-1=7/25
Ответ: 7/25
Автор ответа:
0
воспользуемся формулой:
тогда:
получим:
применим формулу косинус двойного угла:
получим:
так как:
то:
Ответ: 0,28
тогда:
получим:
применим формулу косинус двойного угла:
получим:
так как:
то:
Ответ: 0,28
Похожие вопросы
Предмет: Математика,
автор: Zoyusha
Предмет: История,
автор: kirusikmi472
Предмет: Английский язык,
автор: jcuk4451pomogi
Предмет: Литература,
автор: TaniaNikitina
Предмет: Алгебра,
автор: 77karinka