Предмет: Геометрия,
автор: Vs94ski
Решите задачи, пожалуйста.
Приложения:
Ответы
Автор ответа:
1
Вариант 3.
1.
6x = 5,4
x = 0,9 см
Другие стороны:
5 * 0,9 = 4,5 см
4 * 0,9 = 3,6 см
2.
ΔAMK и ΔBMC подобны по двум углам:
∠MАK = ∠MBC, ∠MKА = ∠MCB, как соответствующие углы образованные параллельными прямыми AK и BC и секущими AB и CK.
Из подобия треугольников следует пропорциональность соответствующих сторон:
BC/AK = MB/MA
BC/18 = 8/(8 + 4)
BC = 8/12 * 18
BC = 2/3 * 18
BC = 12 см
Вариант 4.
1.
4x = 3,6
x = 0,9 см
Другие стороны:
5 * 0,9 = 4,5 см
6 * 0,9 = 5,4 см
2.
ΔABC и ΔOBP подобны по двум углам:
∠BАC = ∠BOP, ∠BCА = ∠BPO, как соответствующие углы образованные параллельными прямыми AC и OP и секущими AB и BC.
Из подобия треугольников следует пропорциональность соответствующих сторон:
OP/AC = PB/BC
OP/15 = 10/20
OP = 1/2 * 15
OP = 7,5 см
1.
6x = 5,4
x = 0,9 см
Другие стороны:
5 * 0,9 = 4,5 см
4 * 0,9 = 3,6 см
2.
ΔAMK и ΔBMC подобны по двум углам:
∠MАK = ∠MBC, ∠MKА = ∠MCB, как соответствующие углы образованные параллельными прямыми AK и BC и секущими AB и CK.
Из подобия треугольников следует пропорциональность соответствующих сторон:
BC/AK = MB/MA
BC/18 = 8/(8 + 4)
BC = 8/12 * 18
BC = 2/3 * 18
BC = 12 см
Вариант 4.
1.
4x = 3,6
x = 0,9 см
Другие стороны:
5 * 0,9 = 4,5 см
6 * 0,9 = 5,4 см
2.
ΔABC и ΔOBP подобны по двум углам:
∠BАC = ∠BOP, ∠BCА = ∠BPO, как соответствующие углы образованные параллельными прямыми AC и OP и секущими AB и BC.
Из подобия треугольников следует пропорциональность соответствующих сторон:
OP/AC = PB/BC
OP/15 = 10/20
OP = 1/2 * 15
OP = 7,5 см
Похожие вопросы
Предмет: Алгебра,
автор: badanova090409
Предмет: География,
автор: slavashumov07
Предмет: Қазақ тiлi,
автор: meterbajmadiar
Предмет: Математика,
автор: Рамин1111
Предмет: Химия,
автор: Аноним