Предмет: Алгебра,
автор: Уч1е2н3и7к
Доказать, что число N=2222степень 5555+5555 степень 2222 делится на 7.
Ответы
Автор ответа:
0
Так как 2222=317*7+3,
5555=793*7+4
то число 2222 в степени 5555 дает тот же остаток при делении на 7, что и число 3 в степени 5555,
число 3 в степени 5555 дает такой же остаток как и число 3 в степени 4=81, т.е. остаток 4 (81=11*7+4)
5555=793*7+4, то число 5555 в степени 2222 дает такой же остаток при делении на 7 как и число 4 в степени 2222,
число 4 в степени 2222 дает такой же остаток при делении на 7 как и число 4 в степени 3=64, т.е. дает остаток 3 (64=9*7+3),
а значит данное число дает такой же остаток как и число 3+4=7 , т..е дает остаток 0, а значит данное число делится на 7 нацело. Доказано
5555=793*7+4
то число 2222 в степени 5555 дает тот же остаток при делении на 7, что и число 3 в степени 5555,
число 3 в степени 5555 дает такой же остаток как и число 3 в степени 4=81, т.е. остаток 4 (81=11*7+4)
5555=793*7+4, то число 5555 в степени 2222 дает такой же остаток при делении на 7 как и число 4 в степени 2222,
число 4 в степени 2222 дает такой же остаток при делении на 7 как и число 4 в степени 3=64, т.е. дает остаток 3 (64=9*7+3),
а значит данное число дает такой же остаток как и число 3+4=7 , т..е дает остаток 0, а значит данное число делится на 7 нацело. Доказано
Похожие вопросы
Предмет: Химия,
автор: skilskaanastasia139
Предмет: Право,
автор: ktoto100
Предмет: Геометрия,
автор: arsendonets
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: aleksandermiha