Предмет: Алгебра, автор: julieklimova

Ребята, помогите, пожалуйста, решить задачу по алгебре!!!
Клумба прямоугольной формы окружена дорожкой, шириной 1м. Площадь дорожки 26м². Найдите стороны клумбы, если одна из них на 5 м больше другой.
Опиши те решение подробно, заранее спасибо)

Ответы

Автор ответа: Svenibm
1

Пусть а-ширина клумбы, тогда (а+5) - длина ее. Площадь клумбы будет измеряться как а(а+5). Рассмотрим прямоугольник, который содержит и клумбу и дорожку. Его стороны будут соответсвенно равны (а+2) и (а+7). А его площадь равна (а+2)(а+7). Также известно, что площадь дорожки равна 26. Можно составить уравнение:

 

а(а+5)=(а+2)(а+7)-26

а²+5а=а²+2а+7а+14-26

2а+7а-5а=26-14

4а=12

а=3 (м) - ширина клумбы

найдем ее длину: 3+5=8 (м)

 

Ответ: 3м и 8м

Автор ответа: orion8105
4
Пусть ширина клумбы равна х,тогда ее длина равна х+5, т.к. она на 5 больше ширины. Площадь клумбы равна х(х+5). Теперь рассмотрим дорожку: ее ширина равна х+2,т.к. прибавляется по 1м с двух сторон,а длина х+7. тогда ее площадь равна (х+2)(х+7). Теперь рассмотрим и клумбу и дорожку вместе.
х(х+5)=(х+2)(х+7)-26
x^2+5x=x^2+9x-12
4x=12
x=3(ширина клумбы)
3+5=8(длина клумбы)  

Похожие вопросы