Предмет: Геометрия,
автор: sokolovaa96p3qu42
Максимум баллов!
Основанием пирамиды является равнобедренный треугольник, боковая сторона которого равна a, а угол между боковыми сторонами – β. Все двугранные углы при основании пирамиды равны φ. Найдите площадь полной поверхности конуса, вписанного в эту пирамиду.
Аноним:
тебе срочно?
Ответы
Автор ответа:
1
r через сторону основания и противолежащий угол неизвестна, поэтому я ее выведу
есть формула радиуса через стороны а и b в равнобедренном Δ
r=(b/2)*√((2a-b)/(2a+b))
b=2*a*sinβ/2
тогда r=a*sinβ/2*√((1-sinβ/2)/(1+sinβ/2))
образующая конуса L=r/cosω
L=a*sinβ/2*√((1-sinβ/2)/(1+sinβ/2))/cosω
S(пол)=S(осн)+S(бок)=pirL+pir^2=pir*(r/cosω+r)=pir^2(1+1/cosω)=
=pi*(a*sinβ/2)^2*(1-sinβ/2)(1+1/cosω)/(1+sinβ/2)
есть формула радиуса через стороны а и b в равнобедренном Δ
r=(b/2)*√((2a-b)/(2a+b))
b=2*a*sinβ/2
тогда r=a*sinβ/2*√((1-sinβ/2)/(1+sinβ/2))
образующая конуса L=r/cosω
L=a*sinβ/2*√((1-sinβ/2)/(1+sinβ/2))/cosω
S(пол)=S(осн)+S(бок)=pirL+pir^2=pir*(r/cosω+r)=pir^2(1+1/cosω)=
=pi*(a*sinβ/2)^2*(1-sinβ/2)(1+1/cosω)/(1+sinβ/2)
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Геометрия,
автор: uehehqjsisusu
Предмет: Физика,
автор: Аноним
Предмет: Математика,
автор: forl1130
Предмет: Биология,
автор: Aromabish