Предмет: Геометрия,
автор: taranenko99
знайти площу ромба сторона 20см.а діагональ на 8 більше
Ответы
Автор ответа:
0
Диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
Рассмотрим один из получившихся при пересечении диагоналей ромба
прямоугольных треугольника. Его катеты - это половинки диагоналей, а
гипотенуза - сторона ромба.
Пусть меньший катет равен х см, тогда больший равен (х+4) см (если
одна из диагоналей на 8 см больше другой, то половинка этой диагонали
больше на 4 см).
Применим к этому прямоугольному треугольнику теорему Пифагора:
х^2+(x+4)^2=20^2
х^2+ х^2+8x+16=400
2 х^2+8x-384=0
х^2+ 4x-192=0
D=4^2-4*(-192)=16+768=784: корень(D)=28
x1=(-4-28)/(2*1)=-32/2=-16 - не подходит по условию задачи
x2=(-4+28)/(2*1)=24/2=12
Значит, меньший катет прямоугольного треугольника равен 12 см, а второй - 16 см.
Следовательно, диагонали ромба будут равны 24 см и 32 см.
Площадь ромба равна половине произведения его диагоналей, т. е.
0,5*24*32=384 (кв. см)
Похожие вопросы
Предмет: Русский язык,
автор: makhnenkoaa
Предмет: Математика,
автор: annaekzekova
Предмет: Алгебра,
автор: bustertopchik6907
Предмет: Математика,
автор: Аноним
Предмет: Алгебра,
автор: OliviaMonster