Предмет: Геометрия,
автор: sashaWOT
Докажите что прямая проведенная через середину оснований трапеции проходит через точку пересечение диогонали трапеции и тачку пересечение продолжение боковых сторон
Ответы
Автор ответа:
0
Пусть трапеция АБСД, О-точка пересечения диагоналей, К- точка пересечения продолжений боковых сторон. Проведем через точку О отрезок МН параллельный большему основанию АД.
Достаточно доказать , что ОМ=ОН, тогда КО -луч на котором лежит медиана треугольника КАД к основанию АД. (Медиана,как известно, - геометрическое место точек , которые делят пополам отрезки заключенные между сторонами КА и КД и параллельные АД).
Докажем , что ОМ=ОН. Рассмотрим Треугольники БАД и БМО.
Они , очевидно подобны и коэффициент подобия равен альфа =отношению высот этих тпеугольников.
Т.е МО=альфа*АД. Но тоже самое можно написать и для треугольников
САД и СОН. Получим ОН=альфа * АД
Значит ОМ=ОН, что и доказывает утверждение.
Поясняю, что такое альфа : альфа -коэффициент подобия. Здесь: отношение высоты треугольника БМО к высоте треугольника БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.
Достаточно доказать , что ОМ=ОН, тогда КО -луч на котором лежит медиана треугольника КАД к основанию АД. (Медиана,как известно, - геометрическое место точек , которые делят пополам отрезки заключенные между сторонами КА и КД и параллельные АД).
Докажем , что ОМ=ОН. Рассмотрим Треугольники БАД и БМО.
Они , очевидно подобны и коэффициент подобия равен альфа =отношению высот этих тпеугольников.
Т.е МО=альфа*АД. Но тоже самое можно написать и для треугольников
САД и СОН. Получим ОН=альфа * АД
Значит ОМ=ОН, что и доказывает утверждение.
Поясняю, что такое альфа : альфа -коэффициент подобия. Здесь: отношение высоты треугольника БМО к высоте треугольника БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.
Автор ответа:
0
что такое альфа?
Автор ответа:
0
эй
Автор ответа:
0
альфа -коэффициент подобия. Здесь: отношение высоты треугольника БМО к высоте треугольника БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.
Похожие вопросы
Предмет: Физкультура и спорт,
автор: SemenOvechkin
Предмет: Русский язык,
автор: ooo811114
Предмет: Обществознание,
автор: semenovova34
Предмет: Математика,
автор: oksahs
Предмет: Математика,
автор: султан95