Предмет: Биология,
автор: SonayHop
Плмогите пожалуйсто. Признаки приспособления дыхания у растений.
Ответы
Автор ответа:
0
Как известно, дыхательная система растений построена по принципу множественности, т. е. на любом этапе дыхания принимают участие два фермента и более, выполняющих одну и ту же функцию.
Значение этого явления становится понятным, если принять во внимание температурный оптимум действия ферментов и сродство их к кислороду. Так, цитохромоксидаза, ферменты флавиновой группы и Cu-протеиды проявляют неодинаковую активность при различном содержании кислорода в тканях. Цитохромоксидаза обладает наибольшим сродством к кислороду, она активна при содержании его в среде 1—2%. Активность же ферментов флавиновой группы возрастает с увеличением концентрации кислорода.
В этой связи интересно, что наружные, хорошо аэрируемые ткани плода мандарина имеют кислородный оптимум при 21%, а внутренние, плохо аэрируемые, — при 10%. Ткани же мякоти, доступ кислорода к которым сильно затруднен, наиболее интенсивно дышат при содержании 5% кислорода в среде. Соответственно этому в плоде распределяются ферменты: в наружных тканях преобладает флавиновая группа (аэробные дегидрогеназы), в средних — медьсодержащие протеиды (дифенолоксидаза, аскорбиноксвдаза), во внутренних — цитохромоксидаза. Указанные ферменты отличаются и по отношению к температуре. Цитохромоксидаза функционирует при более высокой температуре, чем флавинопротеиды, имеющие низкий температурный коэффициент активности (Q10). Благодаря смене ферментативных систем создается возможность для осуществления дыхания в изменившихся условиях.
В ходе онтогенеза растений ферментативные процессы не остаются постоянными. Показано, например, что при созревании плодов яблонь Fe-протеиды сначала заменяются на Cu-протеиды, а затем на более «холодостойкие» флавиновые ферменты. Интересны наблюдения на хвойных. Известно, что хвоя лиственницы на зиму опадает, а хвоя сосны — нет. В формирующейся хвое лиственницы преобладает дифенолоксидаза, в период ее активного роста — цитохромоксидаза и пероксидаза. К осени активность пероксидазы в хвое лиственницы, постепенно падает. В хвое же сосны к осени активность пероксиаазы и дифенолоксидазы непрерывно возрастает, а зимой повышается активность ряда дегидрогеназ (у лиственниц они инактивируются). Полагают, что высокая активность дегидрогеназ способствует повышению зимостойкости хвои сосны благодаря синтезу в ней масел, способных повышать эластичность цитоплазмы и понижать температуру ее замерзания.
Значение этого явления становится понятным, если принять во внимание температурный оптимум действия ферментов и сродство их к кислороду. Так, цитохромоксидаза, ферменты флавиновой группы и Cu-протеиды проявляют неодинаковую активность при различном содержании кислорода в тканях. Цитохромоксидаза обладает наибольшим сродством к кислороду, она активна при содержании его в среде 1—2%. Активность же ферментов флавиновой группы возрастает с увеличением концентрации кислорода.
В этой связи интересно, что наружные, хорошо аэрируемые ткани плода мандарина имеют кислородный оптимум при 21%, а внутренние, плохо аэрируемые, — при 10%. Ткани же мякоти, доступ кислорода к которым сильно затруднен, наиболее интенсивно дышат при содержании 5% кислорода в среде. Соответственно этому в плоде распределяются ферменты: в наружных тканях преобладает флавиновая группа (аэробные дегидрогеназы), в средних — медьсодержащие протеиды (дифенолоксидаза, аскорбиноксвдаза), во внутренних — цитохромоксидаза. Указанные ферменты отличаются и по отношению к температуре. Цитохромоксидаза функционирует при более высокой температуре, чем флавинопротеиды, имеющие низкий температурный коэффициент активности (Q10). Благодаря смене ферментативных систем создается возможность для осуществления дыхания в изменившихся условиях.
В ходе онтогенеза растений ферментативные процессы не остаются постоянными. Показано, например, что при созревании плодов яблонь Fe-протеиды сначала заменяются на Cu-протеиды, а затем на более «холодостойкие» флавиновые ферменты. Интересны наблюдения на хвойных. Известно, что хвоя лиственницы на зиму опадает, а хвоя сосны — нет. В формирующейся хвое лиственницы преобладает дифенолоксидаза, в период ее активного роста — цитохромоксидаза и пероксидаза. К осени активность пероксидазы в хвое лиственницы, постепенно падает. В хвое же сосны к осени активность пероксиаазы и дифенолоксидазы непрерывно возрастает, а зимой повышается активность ряда дегидрогеназ (у лиственниц они инактивируются). Полагают, что высокая активность дегидрогеназ способствует повышению зимостойкости хвои сосны благодаря синтезу в ней масел, способных повышать эластичность цитоплазмы и понижать температуру ее замерзания.
Похожие вопросы
Предмет: Математика,
автор: davletovamir32
Предмет: Немецкий язык,
автор: andriypopovich
Предмет: Математика,
автор: Аноним
Предмет: История,
автор: ксю382
Предмет: Биология,
автор: Аноним