Предмет: Алгебра, автор: GreenApelsin

Дифференциальное уравнение

y''-y'=x+1

Ответы

Автор ответа: Аноним
0
Найдем сначала общее решение соответствующего однородного уравнения 
   y''-y'=0

Осуществив замену y=e^{kx}, получим характеристическое уравнение

k^2-k=0,~~~ k (k-1)=0,~~~~ k_1=0;~~~~ k_2=1

уо.о. = C_1+C_2e^x - общее решение однородного уравнения


Рассмотрим f(x)=x+1

P_n(x)=x+1~~~Rightarrow~~~ n=1;~~~~ alpha =0

Сравнивая  alpha с корнями характеристического уравнения, и принимая во внимания что n=1, частное решение будем искать в виде:

yч.н. = x*(Ax+B) = Ax² + Bx

Найдем первые две производные

y' = 2Ax+B
y'' = 2A

И подставим это в исходное уравнение

2A-2Ax-B=x+1

Приравниваем коэффициенты при степени х

displaystyle  left { {{-2A=1} atop {2A-B=1}} right. ~~Rightarrow~~~~ left { {{A=-0.5} atop {B=-2}} right.

Частное решение: уч.н. = -0.5x^2-2x

Общее решение соответствующего неоднородного уравнения

уо.н. = уо.о. + уч.н. = C_1+C_2e^{x}-0.5x^2-2x
Похожие вопросы
Предмет: Математика, автор: znanija260606
Предмет: Математика, автор: ДанилКонстантинов1