Предмет: Геометрия,
автор: Veene1
упроситите выражение
Приложения:
Ответы
Автор ответа:
0
Формулы, используемые в решении:
Основное тригонометрическое тождество: cos²a + sin²a = 1; cos²a = 1 - sin²a; sin²a = 1 - cos²a;
Определение тангенса: tga = sina/cosa
a) (1 + sina)(1 - sina) = 1 - sin²a = cos²a
б) tga * cosa = (sina/cosa)*cosa = sina
в) 1 + cos²a - sin²а = sin²a + cos²a + cos²a - sin²a = 2cos²a
Ответы: a)cos²a; б) sina; в) 2cos²a
Основное тригонометрическое тождество: cos²a + sin²a = 1; cos²a = 1 - sin²a; sin²a = 1 - cos²a;
Определение тангенса: tga = sina/cosa
a) (1 + sina)(1 - sina) = 1 - sin²a = cos²a
б) tga * cosa = (sina/cosa)*cosa = sina
в) 1 + cos²a - sin²а = sin²a + cos²a + cos²a - sin²a = 2cos²a
Ответы: a)cos²a; б) sina; в) 2cos²a
Похожие вопросы
Предмет: Геометрия,
автор: nastya152288
Предмет: Математика,
автор: cifrovik22042021
Предмет: Информатика,
автор: dinisk72
Предмет: Математика,
автор: shyntasz
Предмет: Математика,
автор: viktoriablum