Предмет: Геометрия, автор: ццц

в прямоугольной трапеции один из углов равен 60 а большая боковая сторона=8см.Найти оснавания трапеции и радиус вписанной в неё окружности.

Ответы

Автор ответа: troleg
0

Высота трапеции (она же меньшая боковая сторона)  8 * sin 60° = 4 * √3 см.

Высота равна диаметру вписанной окружности, поэтому радиус вписанной окружности   4 * √3 / 2 =  2 * √3 см.

Если в четырехугольник можно вписать окружность, то сумма оснований равна сумме боковых сторон, то есть сумма оснований равна  8 + 4 * √3 см.

Разность оснований трапециий  8 * cos 60° = 4 см.

Следовательно, основания трапеции равны  6 + 2 * √3  и  2 + 2 * √3 см.

Похожие вопросы
Предмет: Математика, автор: Аноним
Предмет: Қазақ тiлi, автор: kawaiisenpai11
Предмет: Алгебра, автор: dianadubova92