Предмет: Алгебра, автор: grisenko97

Найдите количество целых отрицательных решений неравенства  frac{(x+2)(x-3)(x-4)}{ (x-2)^{2} }
Объясните

Ответы

Автор ответа: 000LeShKa000
0
Решение:
Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2.
Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным.
Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно.
Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: (-infty;-2)
И положительный: (-2;3) (рис. 2)
Далее, снова отрицательный: (3;4)
И положительный: (4; infty)
Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно.
Ответ: -1
Приложения:
Автор ответа: 000LeShKa000
0
Их всего 2: -2 и -1
Автор ответа: grisenko97
0
значит ответ 2... а от куда -1
Похожие вопросы