Предмет: Математика,
автор: Olusatrum
Найдите наибольшее значение функции у=х^3-6х^2 на отрезаешь [-3;3]
Ответы
Автор ответа:
0
ДАНО
y = x³ - 6*x² = x²*(x-6)
D(x)∈[-3;3]
НАЙТИ
Экстремумы функции.
РЕШЕНИЕ
Найдем экстремумы функции - они могут быть внутри области определения.
y'(x) = 3x²-12x = 3*x*(x-4)
Экстремум при х =0 и у(0) = 0 - максимальное значение.
Минимальное значение при Х = - 3.
Вычисляем значение
y(-3) = -27 - 6*9 = - 81.
ОТВЕТ E(y) ∈[-81;0] - область значений.
График функции - в приложении - подарок.
y = x³ - 6*x² = x²*(x-6)
D(x)∈[-3;3]
НАЙТИ
Экстремумы функции.
РЕШЕНИЕ
Найдем экстремумы функции - они могут быть внутри области определения.
y'(x) = 3x²-12x = 3*x*(x-4)
Экстремум при х =0 и у(0) = 0 - максимальное значение.
Минимальное значение при Х = - 3.
Вычисляем значение
y(-3) = -27 - 6*9 = - 81.
ОТВЕТ E(y) ∈[-81;0] - область значений.
График функции - в приложении - подарок.
Приложения:
Похожие вопросы
Предмет: Геометрия,
автор: liticiyacryli
Предмет: Математика,
автор: dgrandmother54
Предмет: Английский язык,
автор: nurtilekkozonov08
Предмет: Математика,
автор: oksoksi2012
Предмет: Математика,
автор: alime10ax