Предмет: Математика,
автор: Klovblu
Известно, что уравнение
x2+px+q=106
имеет два различных целых корня, причём p и q — простые числа.
Найдите наибольшее возможное значение q.
Ответы
Автор ответа:
0
Если p и q - нечетные, то при любом целом х левая часть всегда нечетная и не может равняться 106. Значит p=2 или q=2. При p=2: х²+2х+q=106, т.е.
q=107-(x+1)². Максимальное q достигается при минимальном (x+1)². При х=-1 получаем q=107 - простое, но оно не подходит т.к. в этом случае имеется только один корень x=-1. При х=0, q=106 - не простое. При х=1, q=107-4=103 - простое и дает два корня х=1 и х=-3. После этого q=2 уже нет смысла рассматривать, поэтому, ответ: q=103.
q=107-(x+1)². Максимальное q достигается при минимальном (x+1)². При х=-1 получаем q=107 - простое, но оно не подходит т.к. в этом случае имеется только один корень x=-1. При х=0, q=106 - не простое. При х=1, q=107-4=103 - простое и дает два корня х=1 и х=-3. После этого q=2 уже нет смысла рассматривать, поэтому, ответ: q=103.
Похожие вопросы
Предмет: Алгебра,
автор: l20655
Предмет: Алгебра,
автор: MorgenSharit
Предмет: Алгебра,
автор: weoldsme
Предмет: Математика,
автор: Аноним
Предмет: История,
автор: дильназ20