Предмет: Алгебра,
автор: aliolga
Известно, что уравнение
x^2+px+q=100
имеет два различных целых корня, причём p и q — простые числа.
Найдите наибольшее возможное значение q.
Ответы
Автор ответа:
0
Уравнение имеет два различных корня, если дискриминант больше нуля.
Перепишем исходное уравнение в виде:
Т.к. числа p и q простые, то p д.б. чётным, чтобы q получилось целым. Но простое чётное число одно - 2. Значит:
Ближайшее наибольшее простое число, удовлетворяющее последнему неравенству, q = 97.
Итак, p = 2; q = 97
Перепишем исходное уравнение в виде:
Т.к. числа p и q простые, то p д.б. чётным, чтобы q получилось целым. Но простое чётное число одно - 2. Значит:
Ближайшее наибольшее простое число, удовлетворяющее последнему неравенству, q = 97.
Итак, p = 2; q = 97
Похожие вопросы
Предмет: Литература,
автор: arina5073
Предмет: Информатика,
автор: dimafarat20057324
Предмет: Физика,
автор: hrvhbyacua
Предмет: Алгебра,
автор: dashadasha456
Предмет: Литература,
автор: Ника1Ника