Предмет: Геометрия,
автор: madama1994
Стороны параллелограмма равны 23 и 11, а диагонали относится как 2:3. Найдите длину большей диагонали.
7. Найдите стороны а и b(a≠b) параллелограмма, острый угол которого 60о, если a:b=5:8, а меньшая диагональ параллелограмма равна 28.
Ответы
Автор ответа:
0
Решаем задачу на основании следствия из теоремы косинусов: в параллелограмме сумма квадратов диагоналей равна сумме квадратов всех сторон параллелограмма.
Обозначим диагонали 2х и 3х.
(2х)² + (3х)² = 2*(23²+11²)
13х²=1300
х=10. Диагонали равны 20 и 30.
2. Обозначим стороны параллелограмма 5х и 8х и применим теорему косинусов к треугольнику с углом 60°.
28²=(5х)²+(8х)²-2*5х*8х*1/2. (1/2 - это косинус 60°)
784 = 89х²-40х²
49х²=784
х=4, стороны параллелограмма 20 и 32.
Обозначим диагонали 2х и 3х.
(2х)² + (3х)² = 2*(23²+11²)
13х²=1300
х=10. Диагонали равны 20 и 30.
2. Обозначим стороны параллелограмма 5х и 8х и применим теорему косинусов к треугольнику с углом 60°.
28²=(5х)²+(8х)²-2*5х*8х*1/2. (1/2 - это косинус 60°)
784 = 89х²-40х²
49х²=784
х=4, стороны параллелограмма 20 и 32.
Похожие вопросы
Предмет: Алгебра,
автор: lerochka0303
Предмет: Обществознание,
автор: chbfyuuj
Предмет: Литература,
автор: 2dtyanka
Предмет: Математика,
автор: диа38
Предмет: Алгебра,
автор: KiraLova3