Предмет: Математика,
автор: risida1972
ln(x)/x^(1/5) вычислить неопределенный интеграл
Ответы
Автор ответа:
0
∫(ln(x)/x^(1/5))dx=∫(ln(x)*x^(-1/5))dx.
∫UdV=U*V-∫VdU
U=ln(x) dV=x^(-1/5)dx V=∫(x^(-1/5))dx=(5/4)*(x^(4/5) dU=(ln(x))`=1/x ⇒
∫UdV=ln(x)*(5/4)*(x^(4/5)-∫(((5/4)*x^(4/5))/x)dx=
=ln(x)*(5/4)*x^(4/5)-(5/4)*∫x^(-1/5)dx=ln(x)*(5/4)*x^(4/5)-(5/4)*(5/4)*x^(4/5)=
=(5/4)*x^(4/5)*((ln(x)-(5/4)).
∫UdV=U*V-∫VdU
U=ln(x) dV=x^(-1/5)dx V=∫(x^(-1/5))dx=(5/4)*(x^(4/5) dU=(ln(x))`=1/x ⇒
∫UdV=ln(x)*(5/4)*(x^(4/5)-∫(((5/4)*x^(4/5))/x)dx=
=ln(x)*(5/4)*x^(4/5)-(5/4)*∫x^(-1/5)dx=ln(x)*(5/4)*x^(4/5)-(5/4)*(5/4)*x^(4/5)=
=(5/4)*x^(4/5)*((ln(x)-(5/4)).
Похожие вопросы
Предмет: Английский язык,
автор: mamedlinarmin312
Предмет: Химия,
автор: Аноним
Предмет: Химия,
автор: angelinasapran05
Предмет: Литература,
автор: алина1386
Предмет: Алгебра,
автор: annafomenko99