Предмет: Алгебра,
автор: Аноним
Задание 1. Вычислите:
а) sin n/6= ?
б) arctg n/6 + n/3 = ?
в) аrcsin (-1)= ?
г) аrcsin 1 = ?
Задание 2.
Докажите, что 1+tg^2 x = 1/ sin^2 x
Задание 3.
Обозначьте промежутки.
а) области определения синусоиды
б) монотонности котангенсоиды
Задание 3- повышенный уровень сложности. Часть С .
Ответы
Автор ответа:
0
Ну и что тут сложного?
1.a)sinп/6=1/2=0,5
b)arctg n/6 + n/3=√3/3+√3=1
в)аrcsin (-1)=-пи/2
г)аrcsin 1=п/2
2.Доказать торжество 1+tg²x=1/sin²x
cos²x+sin²x=1
1/сos²x×sin²x
1=1. Ч.т.д
3. Монотонность котангенсоиды является возрастающей в каждой четверти тангенс .
области определения синусоиды - множество R всех действительных чисел
1.a)sinп/6=1/2=0,5
b)arctg n/6 + n/3=√3/3+√3=1
в)аrcsin (-1)=-пи/2
г)аrcsin 1=п/2
2.Доказать торжество 1+tg²x=1/sin²x
cos²x+sin²x=1
1/сos²x×sin²x
1=1. Ч.т.д
3. Монотонность котангенсоиды является возрастающей в каждой четверти тангенс .
области определения синусоиды - множество R всех действительных чисел
Автор ответа:
0
А я только что узнала что арсксинус единицы не сущ
Похожие вопросы
Предмет: Математика,
автор: kotikvkake
Предмет: Английский язык,
автор: greemort
Предмет: Обществознание,
автор: denisdenisov18032549
Предмет: Математика,
автор: ум064
Предмет: Математика,
автор: Аноним