Предмет: Геометрия, автор: KsyushaParikova

СРОЧНО!!!!!
В выпуклом четырёхугольнике ABCD диагонали AC и BD пересекаются в точке O, причём AO=0C; угол OAD= углу OCB ;BC= 12см. Периметр треугольника COD равен 24см, а периметр треугольника AOD равен 28см.
1) Докажите что ABCD-параллелограмм
2) Найдите периметр четырёхугольника ABCD

Ответы

Автор ответа: ruslangazizov35
0
1)так как два накрест лежащие угла (которые в условии даны) равны, значит противоположные стороны паралелльны. так как АО=ОС, значит треугольник ВОС= треугольнику АОD (по 1 или 2 признаку, не помню). Из этого следует, что ВС=АD, значит противоположные стороны паралелльны и равны, значит это параллелограмм.
2)так как треугольники ВОС=АОD и ВОА=DOC, значит площадь всего параллелограмма = ВОС+АОВ+AOD+DOC=24+28+24+28=104
Автор ответа: KsyushaParikova
0
Спасибо ))
Похожие вопросы