Предмет: Алгебра,
автор: silonte
Построить график уравнения |y+x^2|=|x^2-4|
Ответы
Автор ответа:
0
При |x|≥2 x^2-4≥0.
Тогда при y≥-x^2 y+x^2=x^2-4, откуда y=-4.
-4≥-x^2 ⇒ x^2≥4. Справедливо для всех x, для которых |x|≥2
При y<-x^2
-y-x^2=x^2-4
y=4-2x^2.
Должно выполняться 4-2x^2<-x^2, откуда x^2>4
опять же, справедливо для всех x, для которых |x|>2.
При |x|<2 x^2-4<0
Тогда при y≥-x^2 y+x^2=-x^2+4, откуда y=4-2x^2.
Должно выполняться 4-2x^2≥-x^2
x^2≤4. Неравенство верно при всех x, таких что |x|<2
При y<-x^2 -y-x^2=-x^2+4, откуда y=-4
-4<-x^2 ⇒x^2<4 - Неравенство верно при всех x, таких что |x|<2
Соответственно, получается, что для всех x
справедливы следующие равенства:
y=-4
y=4-x^2.
Графиком данного уравнения являются 2 линии:
1) прямая, параллельная оси Ox, проходящая через точку (0;-4)
2) парабола с ветвями, направленными вниз, и вершиной в точке (0;4).
Тогда при y≥-x^2 y+x^2=x^2-4, откуда y=-4.
-4≥-x^2 ⇒ x^2≥4. Справедливо для всех x, для которых |x|≥2
При y<-x^2
-y-x^2=x^2-4
y=4-2x^2.
Должно выполняться 4-2x^2<-x^2, откуда x^2>4
опять же, справедливо для всех x, для которых |x|>2.
При |x|<2 x^2-4<0
Тогда при y≥-x^2 y+x^2=-x^2+4, откуда y=4-2x^2.
Должно выполняться 4-2x^2≥-x^2
x^2≤4. Неравенство верно при всех x, таких что |x|<2
При y<-x^2 -y-x^2=-x^2+4, откуда y=-4
-4<-x^2 ⇒x^2<4 - Неравенство верно при всех x, таких что |x|<2
Соответственно, получается, что для всех x
справедливы следующие равенства:
y=-4
y=4-x^2.
Графиком данного уравнения являются 2 линии:
1) прямая, параллельная оси Ox, проходящая через точку (0;-4)
2) парабола с ветвями, направленными вниз, и вершиной в точке (0;4).
Похожие вопросы
Предмет: Английский язык,
автор: gaipnazarakdidar
Предмет: Информатика,
автор: Dianacurakova81
Предмет: Другие предметы,
автор: suprunruslan65
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: gulokoshaaa