Предмет: Математика,
автор: sveta30900
напишите уравнение касательной к графику функции f(x)=x^3+3x^2-2x+2 в точке с абсциссой x0=1
Ответы
Автор ответа:
0
уравнение касательной: y=f(x0)+f'(xo)*(x-xo)
вычисляем производную f(x)=3x^2+6x-2
находим её значение в точке Хо f(Xo)=3+6-2=7
находим значение функции в точкеХо f(Xo)=1+3-2+2=4
всё подставляем в исходную формулу y=4+7*(x-1) y=7x-3
вычисляем производную f(x)=3x^2+6x-2
находим её значение в точке Хо f(Xo)=3+6-2=7
находим значение функции в точкеХо f(Xo)=1+3-2+2=4
всё подставляем в исходную формулу y=4+7*(x-1) y=7x-3
Похожие вопросы
Предмет: Другие предметы,
автор: Parniksam
Предмет: Алгебра,
автор: natashapetyhova
Предмет: Алгебра,
автор: pozirun86
Предмет: Алгебра,
автор: noob3208
Предмет: Алгебра,
автор: Zashkvar2281488