Предмет: Алгебра,
автор: xtoto
Поезд состоит из восьми вагонов. Каждый из пяти пассажиров выбирает себе вагон наугад. Сколькими способами они могут выбрать вагоны так, чтобы все пассажиры оказались не более чем в трех вагонах.
В книге ответ:
Моя попытка: 1) я ищу сколько есть способов всех пассажиров рассадить в какой-то один вагон 2) -//- в какие-то два вагона 3) -//- в какие-то три вагона 4) суммирую результаты первых трех пунктов.
детально пункт 1:
выбираю 7 вагонов пыстыми как
размещаю 5 пассажиров в оставшийся вагон как
(размещаю не различимых пассажиров по различимым вагонам)
итого
пункт 2:
аналогично
пункт 3:
аналогично
Итого
У меня сомнения, что я верно интерпретировал условие задачи. Прошу мнение сведующего человека. Спрашиваю другие решения с объяснением. Возможно у кого-то совпадет с ответом в книге. Возможно кто-то докажет, что в книге ответ не верен.
Ответы
Автор ответа:
0
Update
Отдельно рассмотрим случае, когда занят 1 вагон, 2 вагона и 3 вагона.
1) Количество способов, при которых все 5 пассажиров в одном вагоне равно
. Рассадка внутри вагона - единственная.
2) Количество способов выбрать 2 вагона для рассадки (обязательно, чтобы оба выбранных вагона были заняты, так как случаи занятия только одного вагона уже рассмотрены) равно
Между выбранными двумя вагонам каждый пассажир может делать выбор независимо, кроме случаев, когда один из вагонов оказывается пустым.
Значит, таких способов рассадки - ,
всего способов рассадки, при которых заняты ровно 2 вагона: 28*30=840
3) Количество способов, которыми можно выбрать 3 вагона, в которых будут размещаться пассажиры
Далее, для каждого выбранного варианта трех вагонов каждый из 5 пассажиров может выбрать любой вагон, то есть, для каждого пассажира есть выбор из трех вагонов. Всего вариантов разных выборов -
Но мы должны вычесть все способы рассадки, при которых остаются пустыми один или 2 вагона.
Количество способов, при котором остаются пустыми 2 вагона равно 3 (ровно один способ для каждого занятого вагона или )
Количество способов, при котором пустым остается 1 вагон -
То есть, количество способов, при которых заняты ровно 3 вагона, равно
56*(243-3-90)=56*150=8400
4) Значит, всего способов
8+840+8400=9248=2^5*17^2.
Отдельно рассмотрим случае, когда занят 1 вагон, 2 вагона и 3 вагона.
1) Количество способов, при которых все 5 пассажиров в одном вагоне равно
. Рассадка внутри вагона - единственная.
2) Количество способов выбрать 2 вагона для рассадки (обязательно, чтобы оба выбранных вагона были заняты, так как случаи занятия только одного вагона уже рассмотрены) равно
Между выбранными двумя вагонам каждый пассажир может делать выбор независимо, кроме случаев, когда один из вагонов оказывается пустым.
Значит, таких способов рассадки - ,
всего способов рассадки, при которых заняты ровно 2 вагона: 28*30=840
3) Количество способов, которыми можно выбрать 3 вагона, в которых будут размещаться пассажиры
Далее, для каждого выбранного варианта трех вагонов каждый из 5 пассажиров может выбрать любой вагон, то есть, для каждого пассажира есть выбор из трех вагонов. Всего вариантов разных выборов -
Но мы должны вычесть все способы рассадки, при которых остаются пустыми один или 2 вагона.
Количество способов, при котором остаются пустыми 2 вагона равно 3 (ровно один способ для каждого занятого вагона или )
Количество способов, при котором пустым остается 1 вагон -
То есть, количество способов, при которых заняты ровно 3 вагона, равно
56*(243-3-90)=56*150=8400
4) Значит, всего способов
8+840+8400=9248=2^5*17^2.
Автор ответа:
0
Дискусия открыта)
Автор ответа:
0
Выходит, на те же грабли наступили. Значит, надо думать, видимо решение сложнее, чем представлял себе автор задачника.
Автор ответа:
0
Именно так)
Автор ответа:
0
Текущее мое решение мне представляется верным :)
Автор ответа:
0
Как и мне:) Охота проверить точно
Похожие вопросы
Предмет: История,
автор: lankogleb90
Предмет: ОБЖ,
автор: vcilovanska
Предмет: Математика,
автор: ng463596
Предмет: История,
автор: киска152
Предмет: Химия,
автор: larr69