Предмет: Алгебра,
автор: ilemesovadar
Найдите все многочлены P(x) и Q(x), удовлетворяющие при всех x
∈ ℝ равенствам P(Q(x)) = x^4 − 5x^2 + 7 и Q(x− 1) = x^2 − 2x − 1
Ответы
Автор ответа:
0
Подставляем в Q(x - 1) вместо x выражение x + 1:
Q((x + 1) - 1) = (x + 1)^2 - 2(x + 1) - 1
Q(x) = x^2 - 2
Подставляем уже найденный Q(x) в первое равенство.
P(x^2 - 2) = x^4 - 5x^2 + 7
Пусть P(x) = ax^n + ..., проследим за старшей степенью.
P(x^2 + ...) = a(x^2 + ...)^n + ... = a x^(2n) + ...
Сравниваем с имеющим равенством и получаем, что a = 1, n = 2, т.е. P(x) — приведённый квадратный трёхчлен. Представим его в виде P(x) = x^2 + ux + v и будем искать константы u и v.
P(x) = x^2 + ux + v
P(x^2 - 2) = (x^2 - 2)^2 + u(x^2 - 2) + v
P(x^2 - 2) = x^4 - (4 - u)x^2 + (4 - 2u + v)
Выражение в правой части равенства при всех x должно совпадать с x^4 - 5x^2 + 7, при одинаковых степенях должны стоять одинаковые коэффициенты.
P(x) = x^2 - x + 1
Q((x + 1) - 1) = (x + 1)^2 - 2(x + 1) - 1
Q(x) = x^2 - 2
Подставляем уже найденный Q(x) в первое равенство.
P(x^2 - 2) = x^4 - 5x^2 + 7
Пусть P(x) = ax^n + ..., проследим за старшей степенью.
P(x^2 + ...) = a(x^2 + ...)^n + ... = a x^(2n) + ...
Сравниваем с имеющим равенством и получаем, что a = 1, n = 2, т.е. P(x) — приведённый квадратный трёхчлен. Представим его в виде P(x) = x^2 + ux + v и будем искать константы u и v.
P(x) = x^2 + ux + v
P(x^2 - 2) = (x^2 - 2)^2 + u(x^2 - 2) + v
P(x^2 - 2) = x^4 - (4 - u)x^2 + (4 - 2u + v)
Выражение в правой части равенства при всех x должно совпадать с x^4 - 5x^2 + 7, при одинаковых степенях должны стоять одинаковые коэффициенты.
P(x) = x^2 - x + 1
Похожие вопросы
Предмет: Математика,
автор: sabrina20106
Предмет: География,
автор: nika4942
Предмет: История,
автор: afimaqurbanbaeva
Предмет: Математика,
автор: кавабанга2