Предмет: Геометрия, автор: vanjka

Проекции катетов прямоугольного треугольника на гипотенузу равны 9 и 16. Чему равен радиус вписанной в этот треугольник окружности?

Ответы

Автор ответа: vajny
0

АВС - прям. тр-ик. С = 90 гр, СК - высота, АК = 9, ВК = 16,  r = ?

r = S/p, где S - площадь АВС, р - полупериметр. Найдем катеты.

Сначала : СК = кор(АК*ВК) = кор(9*16) = 12

Из пр. тр. АКС:

АС = кор(AK^2 + CK^2) = кор(81+144) = 15

Из пр.тр. ВКС:

ВС = кор(BK^2+CK^2) = кор(256+144) = 20

Гипотенуза АВ = 9+16 = 25.

Находим полупериметр:

р = (25+20+15)/2 = 30

Находим площадь: S = BC*AC/2 = 150

r = S/p = 150/30 = 5.

Ответ: 5.

Похожие вопросы