Предмет: Алгебра,
автор: abashka130
Решите показательные уравнения.
Приложения:
Ответы
Автор ответа:
1
Решение:
1)
0,3^(5-2x)=0,09
0,3^(5-2x)=0,3^2
5-2x=2
-2x=2-5
-2x=-3
х=-3/-2
х=1,5
2)
225*15^(2x+1)=1
15^2*15^(2x+1)=1
15^(2+2x+1)=1
15^(2x+3)=15^0
2x+3=0
2x=-3
х=-3/2
х=-1,5
3)
43^x=8^2x
43^x=64^x
43^x/64^x=1
(43/64)^x= (43/64)^0
x=0
4)
4^x-12*2^x+32=0
(2^2)^x-12*2^x+32=0
2^2x-12*2^x+32=0
Обозначим 2^x другой переменной у; 2^x=y при у>0 , получим уравнение вида:
y^2-12y+32=0
y1,2=(12+-D)/2*1
D=√(12²-4*1*32)=√(144-128)=√16=4
y1,2=(12+-4)/2
у1=(12+4)/2
у1=8
у2=(12-4)/2
у2=4
Отсюда:
2^x=8
2^x=2^3
x1=3
2^x=4
2^x=2^2
x=2
Ответ: х1=3; х2=2
1)
0,3^(5-2x)=0,09
0,3^(5-2x)=0,3^2
5-2x=2
-2x=2-5
-2x=-3
х=-3/-2
х=1,5
2)
225*15^(2x+1)=1
15^2*15^(2x+1)=1
15^(2+2x+1)=1
15^(2x+3)=15^0
2x+3=0
2x=-3
х=-3/2
х=-1,5
3)
43^x=8^2x
43^x=64^x
43^x/64^x=1
(43/64)^x= (43/64)^0
x=0
4)
4^x-12*2^x+32=0
(2^2)^x-12*2^x+32=0
2^2x-12*2^x+32=0
Обозначим 2^x другой переменной у; 2^x=y при у>0 , получим уравнение вида:
y^2-12y+32=0
y1,2=(12+-D)/2*1
D=√(12²-4*1*32)=√(144-128)=√16=4
y1,2=(12+-4)/2
у1=(12+4)/2
у1=8
у2=(12-4)/2
у2=4
Отсюда:
2^x=8
2^x=2^3
x1=3
2^x=4
2^x=2^2
x=2
Ответ: х1=3; х2=2
Похожие вопросы
Предмет: Беларуская мова,
автор: kartonovakira
Предмет: Английский язык,
автор: nastyakonstantynjuk
Предмет: Алгебра,
автор: grinchvanya
Предмет: Математика,
автор: cergejcedec