Предмет: Геометрия,
автор: mkochetova43
Из точек A и B, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры AC и BD на прямую пересечения плоскостей. Найдите длину отрезка AB, если AD=5см, CD=4см, CB=6см.
Ответы
Автор ответа:
0
ΔАСД - прямоугольный с гипотенузой АД = 5см и катетом СД = 4см.
Найдём катет АС из теоремы Пифагора:
АС =√(АД² - СД²) = √(25 - 16) = √9 = 3(см)
ΔАСВ - прямоугольный с гипотенузой АВ и катетами АС = 3см и ВС = 6см.
АВ найдём тоже по теореме Пифагора:
АВ = √(АС² + ВС²) = √(9 + 36) = √ 45 = 3√5 (см)
Ответ: АВ = 3√5см
Найдём катет АС из теоремы Пифагора:
АС =√(АД² - СД²) = √(25 - 16) = √9 = 3(см)
ΔАСВ - прямоугольный с гипотенузой АВ и катетами АС = 3см и ВС = 6см.
АВ найдём тоже по теореме Пифагора:
АВ = √(АС² + ВС²) = √(9 + 36) = √ 45 = 3√5 (см)
Ответ: АВ = 3√5см
Похожие вопросы
Предмет: Алгебра,
автор: egornarbut257
Предмет: Английский язык,
автор: agaknh
Предмет: Алгебра,
автор: EmptyMemories
Предмет: Математика,
автор: VI4KA24
Предмет: Математика,
автор: lerakostromina