Предмет: Геометрия,
автор: Fissadi
В треугольнике ABC проведена медиана CM.
Найдите угол между двумя другими медианами, если AB=10, CM=15.
В ответе укажите градусную меру искомого угла.
Ответы
Автор ответа:
0
В Δ проведены 3 медианы, по свойству медиан в Δ знаем, что медиана в точке пересечения делится в соотношении 2:1, считая от вершины, значит ОМ=СМ:3 ОМ=15:3=5см МВ=1/2АВ=10/2=5 см, так как СМ-медиана.
ОМ=АМ=МВ, следовательно, ∠МВО=∠МОВ, ∠МАО=∠АОМ, ∠АОВ=∠АОМ+∠МОВ, тогда х+х+2х=180°. 4х=180 х=45°⇒
∠АОВ=2х=2*45=90°
......................
ОМ=АМ=МВ, следовательно, ∠МВО=∠МОВ, ∠МАО=∠АОМ, ∠АОВ=∠АОМ+∠МОВ, тогда х+х+2х=180°. 4х=180 х=45°⇒
∠АОВ=2х=2*45=90°
......................
Приложения:
Похожие вопросы
Предмет: Биология,
автор: userfoir
Предмет: Математика,
автор: nikolajsavelev444
Предмет: Математика,
автор: venera4192
Предмет: История,
автор: Katyshec