Предмет: Алгебра,
автор: gggg132
докажите что при любом натуральном n значение выражения (9n+2)^2-(5n-2)^2 делится на 56
Ответы
Автор ответа:
0
(9n+2)^2-(5n-2)^2=81n^2+36n+4-25n^2+20n-4=56n^2+56n=56n(n+1) , в последнем действии общий множитель 56n делится на 56, значит всё число делится на 56.
Автор ответа:
0
(9n+2)² - (5n-2)² =
= 81n²+36n+4 - 25n² + 20n - 4 =
=56n² + 56n = 56n(n + 1)
Один из множителей делится на 56, значит, и всё произведение 56n(n + 1) делится на 56. Доказано!
= 81n²+36n+4 - 25n² + 20n - 4 =
=56n² + 56n = 56n(n + 1)
Один из множителей делится на 56, значит, и всё произведение 56n(n + 1) делится на 56. Доказано!
Похожие вопросы
Предмет: Информатика,
автор: ergancumakov
Предмет: Русский язык,
автор: mika071157
Предмет: Английский язык,
автор: anonim4915
Предмет: Алгебра,
автор: nastua651
Предмет: Математика,
автор: катя02032004