Предмет: Алгебра, автор: Алкадиеныч

Решить хороший параметр.
Подробно.

Приложения:

Ответы

Автор ответа: yugolovin
0
 left { {{(x-2)(x+y-2)=0} atop {y=ax^2-4}} right.

Первое уравнение задает вертикальную прямую x=2 и наклонную прямую y=2-x, которые пересекаются в  точке (2;0). Второе уравнение при a=0 задает горизонтальную прямую y=-4, которая пересекается и с вертикальной прямой, и с наклонной, причем эти  точки разные. Поэтому a=0 заносим в ответ. При a>0 второе уравнение задает параболу с вершиной в точке (0;-4) и ветвями, направленными вверх. Она один раз пересечет вертикальную прямую, а наклонную - два раза, поскольку вершина параболы расположена ниже этой прямой. Получаем перебор - три точки. Исключением является случай, когда одна из точек пересечения параболы с наклонной прямой является по совместительству точкой (2;0) пересечения вертикальной прямой c наклонной  - это происходит при a=1; заносим его также в ответ. Остается разобраться с a<0. При этом вершина параболы остается в точке (0;-4), но ветви направлены вниз. В этом случае количество решений варьируется от 1 - это когда a, будучи отрицательным, большое по модулю; в этом случае парабола резко идет вниз и пересекается только с вертикальной прямой. При постепенном увеличении a (не забываем, что a<0) в какой-то момент парабола коснется наклонной прямой, это означает, что решений будет два; при дальнейшем стремлении a к нулю парабола будет пересекать наклонную прямую дважды, а количество решений системы возрастет до трех. Поэтому наша задача поймать момент касания. Проще всего для этого приравнять ax^2-4 и 2-x и узнать, при каких a дискриминант равен нулю, что равносильно тому, что получающееся уравнение имеет кратный корень. ax^2-4=2-x; ax^2+x-6=0; D=1+24a=0; a=-frac{1}{24}

Ответ: ain{-frac{1}{24}; 0; 1}   
Похожие вопросы