Предмет: Алгебра, автор: malika1992

Парабола с вершиной, лежащей на оси Ox, касается прямой, проходящей через точки A(-1;2) и B(3;5), в точке B. Найти уравнение параболы. Спасибо

Ответы

Автор ответа: xxxeol
0
Уравнение касательной АВ.
y = k*x+b
k = (By-Ay) / (Bx-Ax)= (5-2)/(3+1) = 3/4 - наклон касательной.
b = By - k*Bx = 5 - 3/4*3 = 2 3/4 = 2.75
Уравнение параболы с вершиной на оси ОУ
Y = a*x² + c
Уравнение касательной к функции
Y = Y'(x)*x + c
Производная параболы
Y'(Bx) = 2*a*Y(Bx)
a = k/2 = 3/8 - размах параболы.
Неизвестное -  с - сдвиг параболу по оси ОУ..
Точка В принадлежит и касательной и параболе.
By = 3/8 *Bx + c
5  = 3/8* 3 + c
c = 5 - 9/8 = 3.175
Уравнение параболы
Y = 3/8*x² + 3.175 - ответ
Проверка графиками на рисунке в приложении.

Приложения:
Похожие вопросы
Предмет: Математика, автор: regina7330
Предмет: Информатика, автор: vanayayakimov2