Предмет: Геометрия,
автор: lilsprite
Через конечную точку D диагонали BD=15,5 ед. изм. квадрата ABCD проведена прямая перпендикулярно диагонали BD. Проведённая прямая пересекает прямые BA и BC в точках M и N соответственно.
Определи длину отрезка MN.
Ответы
Автор ответа:
0
Диагональ квадрата является биссектрисой угла В квадрата, значит высота треугольника MBN - это и биссектриса и медиана треугольника MBN, а стороны квадрата AD и СD - средние линии этого треугольника, так как они параллельны сторонам BN и BM соответственно и проходят через середину стороны MN треугольника.
Сторона квадрата равна 15,5/√2 (так как диагональ равна 15,5 - дано).
Тогда ВN=BM=31/√2, а MN=√(BN²+BM²) = 31 ед.
Ответ: MN=31 ед.
Второй вариант: треугольник DBN (и DBM) - прямоугольный равнобедренный, так как острый угол DBN (как и <DBM)=45°. Значит DN=DM=DB=15,5. тогда MN=2*15,5=31 ед.
Ответ: MN=31 ед.
Сторона квадрата равна 15,5/√2 (так как диагональ равна 15,5 - дано).
Тогда ВN=BM=31/√2, а MN=√(BN²+BM²) = 31 ед.
Ответ: MN=31 ед.
Второй вариант: треугольник DBN (и DBM) - прямоугольный равнобедренный, так как острый угол DBN (как и <DBM)=45°. Значит DN=DM=DB=15,5. тогда MN=2*15,5=31 ед.
Ответ: MN=31 ед.
Похожие вопросы
Предмет: Математика,
автор: hrupovavaleria
Предмет: ОБЖ,
автор: diana7076113
Предмет: Қазақ тiлi,
автор: flamingo4596
Предмет: История,
автор: mr1danik1