Предмет: Алгебра,
автор: MenPelmen
Найдите все такие углы α, для каждого из которых выполняется равенство:
Ответы
Автор ответа:
0
1) sinα=√2/2
Это табличное значение, положительное значит угол может лежать только в первой и второй четверти.
α=π/4, 3π/4, 9π/4, 11π/4
По-простому правило такое для первой четверти периодичность 2π.
a=π/4+2πk, k∈Z
Для второй четверти периодичность также будет 2π
a=3π/4+2πk, k∈Z
Объединив 2 решения для 1 и 2 четверти получаем правило:
a=(-1)ⁿπ/4+πk, k∈Z
2) cosa=-1/2
Это также табличное значение "-" говорит о том, что cos располагается во 2 и 3 четверти.
a=2π/3, -2π/3, 4π/3, -4π/3
Значит значение косинуса подчиняется правилу:
а=+-2π/3+2πk, k∈Z
3) tga=-√3/3
tg располагается во второй и четвертой четверти.
А значит периодичность функции π.
a=5π/6, 11π/6....
Если учесть, что есть периодичность π.
a=5π/6+πk, k∈Z
4) ctga=√3
Аналогично tg.
a=π/6, 7π/6 ....
a=π/6+πk, k∈Z
Это табличное значение, положительное значит угол может лежать только в первой и второй четверти.
α=π/4, 3π/4, 9π/4, 11π/4
По-простому правило такое для первой четверти периодичность 2π.
a=π/4+2πk, k∈Z
Для второй четверти периодичность также будет 2π
a=3π/4+2πk, k∈Z
Объединив 2 решения для 1 и 2 четверти получаем правило:
a=(-1)ⁿπ/4+πk, k∈Z
2) cosa=-1/2
Это также табличное значение "-" говорит о том, что cos располагается во 2 и 3 четверти.
a=2π/3, -2π/3, 4π/3, -4π/3
Значит значение косинуса подчиняется правилу:
а=+-2π/3+2πk, k∈Z
3) tga=-√3/3
tg располагается во второй и четвертой четверти.
А значит периодичность функции π.
a=5π/6, 11π/6....
Если учесть, что есть периодичность π.
a=5π/6+πk, k∈Z
4) ctga=√3
Аналогично tg.
a=π/6, 7π/6 ....
a=π/6+πk, k∈Z
Похожие вопросы
Предмет: Информатика,
автор: 1337Y4enik1337
Предмет: Русский язык,
автор: korganbajmadina7
Предмет: Алгебра,
автор: Аноним
Предмет: Литература,
автор: daria6622