Предмет: Алгебра,
автор: konond
Сумма корней уравнения Cos2x-sin2x=1
Ответы
Автор ответа:
0
cos^2(x)-sin^2(x)-2sinxcosx-1=0
cos^2(x)-sin^2(x)-2sinxcosx-(sin^2(x)+cos^2(x))=0
2sinxcosx+2sin^2(x)=0
sinx(cosx+sinx)=0
Произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, а другой при этом существует.
1) sinx=0
x=Пn, n принадлежит Z
2) cosx+sinx=0
cosx=-sinx
ctgx=-1
x=-П/4+Пn, n принадлежит Z
Найдем сумму корней:
-П/4+Пn+0=-П/+Пn,nЭZ
cos^2(x)-sin^2(x)-2sinxcosx-(sin^2(x)+cos^2(x))=0
2sinxcosx+2sin^2(x)=0
sinx(cosx+sinx)=0
Произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, а другой при этом существует.
1) sinx=0
x=Пn, n принадлежит Z
2) cosx+sinx=0
cosx=-sinx
ctgx=-1
x=-П/4+Пn, n принадлежит Z
Найдем сумму корней:
-П/4+Пn+0=-П/+Пn,nЭZ
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Математика,
автор: pzajceva235
Предмет: Алгебра,
автор: Аноним
Предмет: Математика,
автор: Аноним
Предмет: Алгебра,
автор: ОлежкаУсынин1