Предмет: Алгебра, автор: умная178

решите пошу, срасибо

Приложения:

Ответы

Автор ответа: sintiyaberk
1
1. a) \left \{ {{3x-2\ \textless \ 2+5x} \atop {8x\ \textgreater \ 15-2x}} \right.
 \left \{ {{3x-5x\ \textless \ 2+2} \atop {8x+2x\ \textgreater \ 15}} \right.
 \left \{ {{-2x\ \textless \ 4} \atop {10x\ \textgreater \ 15}} \right.
 \left \{ {{x\ \textgreater \ -2} \atop {x\ \textgreater \ 1,5}} \right.
x∈(1,5;+∞)
б)
 \left \{ {{5x\ \textless \ 4+10x} \atop {6x+1\ \textgreater \ 1+4x}} \right.
 \left \{ {{5x-10x\ \textless \ 4} \atop {6x-4x\ \textgreater \ 1-1}} \right.
 \left \{ {{-5x\ \textless \ 4} \atop {2x\ \textgreater \ 0} \right.
 \left \{ {{x\ \textgreater \ -0,8} \atop {x\ \textgreater \ 0}} \right.
x∈(0;+∞)
2.а) \frac{y-xy}{3} * \frac{6}{1- x^{2} }-  \frac{y}{1+x} = \frac{y(1-x)*6}{(1-x)(1+x)*3}- \frac{y}{1+x} = \frac{2y}{1+x} - \frac{y}{1+x} = \frac{2y-y}{1+x}= \frac{y}{1+x}
б)
 \frac{3a}{1+c}- \frac{4}{1-c^2} * \frac{a-ac}{2}= \frac{3a}{1+c}- \frac{4*a(1-c)}{2(1-c)(1+c)} =  \frac{3a}{1+c} - \frac{2a}{1+c} = \frac{3a-2a}{1+c}= \frac{a}{1+c}
3.а)
 \frac{6^{-4}*6^{-9}}{6^{-12}} = \frac{6^{-4+(-9)}}{6^{-12}}= \frac{6^{-13}}{6^{-12}}  = 6^{-13-(-12)}=6^{-13+12}=6^{-1}= \frac{1}{6}
б)
 \frac{7^{-7}*7^{-8}}{7^{-13}} = \frac{7^{-7+(-8)}}{7^{-13}} = \frac{7^{-15}}{7^{-13}} =7^{-15-(-13)}=7^{-15+13}=7^{-2}= \frac{1}{7^2} = \frac{1}{49}
4.а)
 \left \{ {{x+y=-2} \atop {y^2-3x=6}} \right.
Домножим на 3 первое уравнение системы и сложим со вторым:
 \left \{ {{3x+3y=-6} \atop {y^2-3x=6}} \right.
 \left \{ {{x+y=-2} \atop {y^2+3y=0}} \right.
 \left \{ {{x+y=-2} \atop {y(y+3)=0}} \right.
 \left \{ {{x=-2-y} \atop {y_1=0;y_2=-3}} \right.
 \left \{ {{x_1=-2-0; x_2=-2-(-3)} \atop {y_1=0;y_2=-3}} \right.
 \left \{ {{x_1=-2; x_2=1} \atop {y_1=0;y_2=-3}} \right.
б)
 \left \{ {{x+y=5} \atop {x^2-3y=-15}} \right.
Домножим на 3 первое уравнение системы и сложим со вторым:
 \left \{ {{3x+3y=15} \atop { x^{2} -3y=-15}} \right.
 \left \{ {{x+y=3} \atop { x^{2} +3x=0}} \right.
 \left \{ {{y=5-x} \atop {x(x+3)=0}} \right.
 \left \{ {{y=5-x} \atop {x_1=0; x_2=-3}} \right.
 \left \{ {{y_1=5-0; y_2=5-(-3)} \atop {x_1=0; x_2=-3}} \right.
 \left \{ {{y_1=5; y_2=8} \atop {x_1=0; x_2=-3}} \right.
5.а)
-4\ \textless \ 2x-1\ \textless \ 2
-4+1\ \textless \ 2x\ \textless \ 2+1
-3\ \textless \ 2x\ \textless \ 3
 \frac{-3}{2} \ \textless \ x\ \textless \  \frac{3}{2}
-1,5\ \textless \ x\ \textless \ 1,5
x∈(-1,5; 1,5)
б)-6\ \textless \ 5x-1\ \textless \ 5
-6+1\ \textless \ 5x\ \textless \ 5+1
-5\ \textless \ 5x\ \textless \ 6
 \frac{-5}{5}\ \textless \ x\ \textless \   \frac{6}{5}
-1\ \textless \ x\ \textless \ 1,2
x∈(-1;1,2)
6.а)3 x^{2} +9=12x- x^{2}
3 x^{2} + x^{2} -12x+9=0
4 x^{2} -2*2x*3+3^2=0
(2x-3)^2=0
2x-3=0
x= \frac{3}{2}
x=1,5
б)
5 x^{2} +1=6x-4 x^{2}
5 x^{2} +4 x^{2} -6x+1=0
(3x)^2-2*3x*1+1^2=0
(3x-1)^2=0
3x-1=0
x= \frac{1}{3}
Похожие вопросы