Предмет: Алгебра,
автор: fredoom12340
1)докажите неравенство
(а-4)^2>а(а-8)
2)Известно что 3
3)Докажите неравенство
26a^2+10ab+b^2+2а+4>0
Ответы
Автор ответа:
0
1) доказать неравенство (а-4)² > а(а-8)
---
(а-4)² - а(а-8) =a² -8a+16 -a² +8a = 16 >0 ⇒ (а-4)² > а(а-8) .
-------------------
3) доказать неравенство 26a²+10ab+b²+2а+4 > 0
---
26a²+10ab+b²+2а+4 = (25a²+12*5a*b+b²) +(a² +2a+1) +3 =
(5a+b)² +(a+1)² +3 > 0 * * * ≥3 , =3 , если a = -1 ; b= -5a =- 5*(-1) = 5 * * *
---
(а-4)² - а(а-8) =a² -8a+16 -a² +8a = 16 >0 ⇒ (а-4)² > а(а-8) .
-------------------
3) доказать неравенство 26a²+10ab+b²+2а+4 > 0
---
26a²+10ab+b²+2а+4 = (25a²+12*5a*b+b²) +(a² +2a+1) +3 =
(5a+b)² +(a+1)² +3 > 0 * * * ≥3 , =3 , если a = -1 ; b= -5a =- 5*(-1) = 5 * * *
Похожие вопросы
Предмет: Русский язык,
автор: aidyn200813
Предмет: Литература,
автор: ernartasynbekov994
Предмет: Английский язык,
автор: erikbajmahambet
Предмет: Математика,
автор: Муслим111
Предмет: Математика,
автор: анжела104