Предмет: Геометрия,
автор: KsuMot
Биссектриса острого угла прямоугольного треугольника делит противоположный катет на отрезки 2.6 см и 2.4 см. Найдите периметр треугольника.
Ответы
Автор ответа:
0
Треугольник ABC с прямым углом A. Биссектриса BL делит сторону AC на отрезки AL=2.4 см и LC=2.6 см. Это так, потому что есть теорема, что биссектриса делит сторону на отрезки, отношение которых прямопропорционально отношениям длин сторон. Т.е. в данном случае BC/AB=LC/AC. А т.к. гипотенуза больше катета, то именно LC=2.6 см. Значит, BC/AB=2.6/2.4=13/12. Пусть AB=x, тогда BC=13/12x. По теореме Пифагора: BC^2=AC^2+AB^2=x^2 (умножить на) 169/144=x^2+(2.4+2.6)^2=x^2 (умножить на) 169/144+25. Решаем уравнение и получаем, что x^2=144. Значит, x=12=AB, значит, BC=13. Считаем периметр - AB+BC+CA=12+13+5=30см.
Похожие вопросы
Предмет: Математика,
автор: ergawevadilbar754
Предмет: Қазақ тiлi,
автор: tynystybaevaglnaz
Предмет: Английский язык,
автор: Аноним
Предмет: Алгебра,
автор: Utkonos
Предмет: Физика,
автор: AJIuK