Предмет: Математика,
автор: Megi11
Ответьте пожалуйста на вопросы срочно надо!!!!!
Приложения:
Ответы
Автор ответа:
0
Перевод условий задач на математический язык часто дает числовые выражения, то есть, выражения, составленные из чисел и знаков действий. Они могут быть как очень простыми, состоящими из чисел и знаков арифметических действий, так и достаточно сложными и громоздкими, содержащими скобки, степени, дроби, корни и т.п. Но составленное выражение зачастую является лишь промежуточным этапом решения задачи, а ответ заключается в значении составленного выражения. Так мы приходим к задаче - найти значение выражения.
Разберемся с правилами, по которым вычисляются значения выражений.
Простейшие случаи
Знакомство с правилами нахождения значений выражений начнем со случаев, когда числовое выражение не содержит в своей записи ничего другого, кроме чисел и знаков арифметических действий. Эти случаи мы и назвали простейшими.
Чтобы успешно находить значения таких выражений, нужно уметь выполнять действия с различными числами, а также иметь представление о порядке выполнения действий в выражениях без скобок.
Итак, если числовое выражение составлено из чисел и знаков +, −, · и :, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.
Приведем решение примеров для пояснения.
Пример.
Вычислите значение выражения 14−2·15:6−3.
Решение.
Чтобы найти значение выражения, нужно выполнить все указанные в нем действия в соответствии с принятым порядком выполнения этих действий. Вначале по порядку слева направо выполняем умножение и деление, получаем 14−2·15:6−3=14−30:6−3=14−5−3. Теперь также по порядку слева направо выполняем оставшиеся действия: 14−5−3=9−3=6. Так мы нашли значение исходного выражения, оно равно 6.
Ответ:
14−2·15:6−3=6.
БУКВЕННЫЕ
Помимо числовых выражений изучают буквенные выражения, то есть выражения, в записи которых вместе с числами присутствует одна или несколько букв. Буквы в буквенном выражении могут обозначать различные числа, и если буквы заменить этими числами, то буквенное выражение станет числовым.
Определение.
Числа, которыми заменяют буквы в буквенном выражении, называют значениями этих букв, а значение полученного при этом числового выражения называют значением буквенного выражения при данных значениях букв.
Итак, для буквенных выражений говорят не просто о значении буквенного выражения, а о значении буквенного выражения при данных (заданных, указанных и т.п.) значениях букв.
Приведем пример. Возьмем буквенное выражение 2·a+b. Пусть заданы значения букв a и b, например, a=1 и b=6. Заменив буквы в исходном выражении их значениями, получим числовое выражение вида 2·1+6, его значение равно 8. Таким образом, число 8есть значение буквенного выражения 2·a+b при заданных значениях букв a=1 и b=6. Если бы были даны другие значения букв, то мы бы получили значение буквенного выражения для этих значений букв. Например, при a=5 и b=1 имеем значение 2·5+1=11.
В старших классах при изучении алгебры буквам в буквенных выражениях позволяют принимать различные значения, такие буквы называют переменными, а буквенные выражения – выражениями с переменными. Для этих выражений вводится понятие значения выражения с переменными при выбранных значениях переменных. Разберемся, что это такое.
Определение.
Значением выражения с переменными при выбранных значениях переменных называется значение числового выражения, которое получается после подстановки выбранных значений переменных в исходное выражение.
Разберемся с правилами, по которым вычисляются значения выражений.
Простейшие случаи
Знакомство с правилами нахождения значений выражений начнем со случаев, когда числовое выражение не содержит в своей записи ничего другого, кроме чисел и знаков арифметических действий. Эти случаи мы и назвали простейшими.
Чтобы успешно находить значения таких выражений, нужно уметь выполнять действия с различными числами, а также иметь представление о порядке выполнения действий в выражениях без скобок.
Итак, если числовое выражение составлено из чисел и знаков +, −, · и :, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.
Приведем решение примеров для пояснения.
Пример.
Вычислите значение выражения 14−2·15:6−3.
Решение.
Чтобы найти значение выражения, нужно выполнить все указанные в нем действия в соответствии с принятым порядком выполнения этих действий. Вначале по порядку слева направо выполняем умножение и деление, получаем 14−2·15:6−3=14−30:6−3=14−5−3. Теперь также по порядку слева направо выполняем оставшиеся действия: 14−5−3=9−3=6. Так мы нашли значение исходного выражения, оно равно 6.
Ответ:
14−2·15:6−3=6.
БУКВЕННЫЕ
Помимо числовых выражений изучают буквенные выражения, то есть выражения, в записи которых вместе с числами присутствует одна или несколько букв. Буквы в буквенном выражении могут обозначать различные числа, и если буквы заменить этими числами, то буквенное выражение станет числовым.
Определение.
Числа, которыми заменяют буквы в буквенном выражении, называют значениями этих букв, а значение полученного при этом числового выражения называют значением буквенного выражения при данных значениях букв.
Итак, для буквенных выражений говорят не просто о значении буквенного выражения, а о значении буквенного выражения при данных (заданных, указанных и т.п.) значениях букв.
Приведем пример. Возьмем буквенное выражение 2·a+b. Пусть заданы значения букв a и b, например, a=1 и b=6. Заменив буквы в исходном выражении их значениями, получим числовое выражение вида 2·1+6, его значение равно 8. Таким образом, число 8есть значение буквенного выражения 2·a+b при заданных значениях букв a=1 и b=6. Если бы были даны другие значения букв, то мы бы получили значение буквенного выражения для этих значений букв. Например, при a=5 и b=1 имеем значение 2·5+1=11.
В старших классах при изучении алгебры буквам в буквенных выражениях позволяют принимать различные значения, такие буквы называют переменными, а буквенные выражения – выражениями с переменными. Для этих выражений вводится понятие значения выражения с переменными при выбранных значениях переменных. Разберемся, что это такое.
Определение.
Значением выражения с переменными при выбранных значениях переменных называется значение числового выражения, которое получается после подстановки выбранных значений переменных в исходное выражение.
Похожие вопросы
Предмет: Русский язык,
автор: mdmfngk
Предмет: Биология,
автор: 25268620
Предмет: Українська мова,
автор: ll7674472
Предмет: Математика,
автор: marga21