Предмет: Алгебра, автор: gek

1. Відстань від пристані А до пристані В за течією річки човен проходить за 3 години . Одного разу , не доходячи 20км до пристані В , човен повернув назад і повернувся в А , витративши на весь шлях 4,5 годин . Знайти швидкість човна в стоячій воді , якщо швидкість течуї 2 км/годину ?

2.З двох міст М і Р виїхали одночасно два автомобілі і зустрілися через 5 годин . Швидкість автомобіля , що виіхав з М, на 10 кв/годину менша . Якби другий автомобіль виїхав на 4,5 годин пізніше , ніж перший , то автомобілі зустрілися б на відстані на 150 км від Р . Яка відстань між М і Р ?   

Ответы

Автор ответа: vajny
0

1. Пусть х - скорость лодки в стоячей воде. (х+2) - скорость по течению, (х-2) скорость против течения. Тогда расстояние от А до В: 3(х+2).

Из условия лодка прошла (3х+6-20)=3х-14 км по течению и, повернув обратно, столько же - против течения, все - за 4,5 часа. Уравнение:

frac{3x-14}{x+2} + frac{3x-14}{x-2} = 4,5.

Умножив все уравнение на 2(х-2)(х+2), получим:

(6х-28)(х-2) + (6х-28)(х+2) = 9(х-2)(х+2)

Или:

3x^2-56x+36=0,    D=2704,   sqrt{D}=52,    x = frac{56+52}{6}= 18.

Другой корень не подходит по смыслу - скорость лодки не может быть меньше скорости течения).

Ответ: 18 км/ч.

2. Пусть х - скорость первого автомобиля ( выехал из М), тогда (х+10) - скорость другого автомобиля. Пусть у - искомое расстояние между М и Р.

Тогда из условия имеем систему:

5(x+(x+10)) = y,

frac{y-150}{x} = frac{150}{x+10} + 4,5.

у = 10х + 50

Подставим во второе и домножив на 2х(х+10), получим:

20(х-10)(х+10) = 300х + 9х(х+10)

11x^2 - 390x - 2000 = 0,   D =  240100,   корD = 490.

х = (390+490)/22 = 40 км/ч     у = 10х+50 = 450 км

Ответ: 450 км.

 

 

Похожие вопросы