Предмет: Геометрия, автор: liza1334

Дано:треугольник KHM и треугольник ОMB
KM=MB ,HM=MD
Доказать :треугольник KHM=DMB
Помогите пожалуйста ❤

Приложения:

Ответы

Автор ответа: lenochka20030209
0

дано: треугольник KMN, AK=BN, AM=BM, CA перпендикулярно KM, CB перпендикулярно NM
доказать: MC - медиана треугольника KMN

В треугольнике KMN боковые стороны состоят из равных отрезков
AK=BN, AM=BM, следовательно


КМ=МК+АМ=ВN+MB=MN


Треугольник KMN - равнобедренный.


Δ КАС=Δ СВN,

так как это прямоугольные треугольники,

углы К и N равны как углы при основании равнобедренного треугольника,

катеты КА=ВN
Если в прямоугольном  треугольнике  острый угол и катет равен острому углу и катету другого прямоугольного треугольника, то эти треугольники равны.


Следовательно, гипотенузы АС и CN этих треугольников равны.
АС=СN 
Точка С - середина стороны КN
МС - медиана треугольника KMN, что и требовалось доказать. 

Автор ответа: moon0508
0
Доказательство: по двум сторонам и углу между ними
По условии уже сказано, что КМ=МВ, НМ=МD и углы КМН и DМВ равны как вертикальные углы
Похожие вопросы
Предмет: Английский язык, автор: aldiarsultanbekov39
Предмет: Химия, автор: AlosTr
Предмет: География, автор: вллаоадпжсизищлвдвжа