Предмет: Алгебра, автор: Shego

1)Четвертый член геометрической прогрессии на 18 больше второго члена, а сумма первого и третьего членов равна -15. Найдите сумму первых восьми членов этой прогрессии

 

2)Найдите пятый член бесконечно убывающей геометрической прогрессии, если ее сумма равна 4, разность между первым и третьим членами равна 7/16 , а знаменатель прогрессии является рациональным числом 

 

 

Ответы

Автор ответа: Fedor
0

1) a1q^3 - a1q=18

    a1+a1q^2=15

 из второго уравнения, имеем

   a1(1+q^2)=15 => a1=15/(1+q^2)

подставим в первое уравнение значение a1,получим

  15 q^3/(1+q^2)-15q/(1+q^2)=18

 

15q^3-15q=18(1+q^2)

15q^3-18q^2-15q-18=0

5q^3-6q^2-5q-6=0

5q^3-10q^2+4q^2-8q+3q-6=0

(5q^3-10q^2)+(4q^2-8q)+(3q-6)=0

5q^3(q-2)+4q(q-2)+3(q-2)=0

(q-2)(5q^2+4q+3)=0

a)  q-2=0 => q=2

б)  5q^2+4q+3=0

     D=b^2-4ac=-44 - нет решений

 

итак, a1=15/(1+q^2)=15/(1+4)=3

то есть, a1=3 и q=2

 

s8=a1*(1-q^8)/(1-q)=3*(1-2^8)/(1-2)=3*255=765

Автор ответа: vajny
0

1) Из условия составим систему уравнений для нахождения b1 и q:

b_{1}q^3-b_{1}q=18,

b_{1}+b_{1}q^2=-15.

Поделив уравнения, получим:

frac{q(q^2-1)}{q^2+1}=-frac{6}{5}.

Домножив на общий знаменатель и приведя подобные члены, получим кубическое уравнение для нахождения q:

5q^3+6q^2-5q+6=0

Подбором сразу находим один корень: q = -2.

Поделив кубический многочлен на (q+2), получим:

(q+2)(5q^2-4q+3)=0

Корень (-2) - единственный, так как второй множитель корней не имеет (D<0).

Итак  q= -2.   Из второго уравнения системы найдем b1:

b_{1}=frac{-15}{1+q^2}=-3

Теперь находим искомую сумму:

S_{8}=frac{b_{1}(1-q^8)}{1-q}=frac{(-3)(1-2^8)}{1-(-2)}=frac{765}{3}=255

Ответ: 255

2. Исходя из условия, составим систему:

frac{b_{1}}{1-q}=4

b_{1}(1-q^2)=frac{7}{16}

Или разделив второе на первое, получим:

(1-q^2)(1-q)=frac{7}{64}

q^3-q^2-q+frac{57}{64}=0

По условию q- рациональная дробь. Подбором находим рациональный корень: q = 3/4.

Тогда из первого уравнения системы находим: b1 = 1

Тогда:

b_{5}=b_{1}q^4=frac{81}{256}

Ответ: 81/256

Похожие вопросы
Предмет: Математика, автор: konratbekjalgas
Предмет: Математика, автор: sablukov